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SIMULTANEOUS POTENTIAL AND CIRCUIT SOLUTION
FOR BOUNDED PLASMA PARTICLE SIMULATION CODES

John P. Verboncoeur, M. Virginia Alvest, and V. Vahedi
Plasma Theory and Simulation Group

University of California, Berkeley, CA 94720

Abstract

A second-order accurate method for solving the combined potential and circuit
equations in an electrostatic bounded plasma PIC simulation is presented. The
boundary conditions include surface charge on the electrodes, which are connected
to a series RLC circuit with driving terms V(t) and 1(t). The solution is obtained for
planar, cylindrical, and spherical electrodes. The result is a tridiagonal matrix which
is readily solved using well-known methods. The method is implemented in the codes
PDP1 (Plasma Device Planar 1D), PDC1 (Cylindrical), and PDS I (Spherical).

I. INTRODUCTION
A comprehensive review of the considerations involved in bounded plasma particle simu-

lation is presented by W. S. Lawson [ 1]. Lawson presents a method which is second-order accurate
when At2ILC < 1 and R AtiL <t 1, and is stable for At2/LC < 2 and RAt/L < 2. Here we improve
on the accuracy, stability, and simultaneity of the solution for potentials in a bounded one-
dimensional plasma with external circuit and driving terms.

In [1] and [2] the boundary conditions are decoupled from the potential equation. A first-
order circuit solution is used when the inductance is zero. The scheme is self-consistent when L
is non-zero and the applied (driving) potential is small compared to the space-charge potential
across the system. These conditions are violated for a large class of problems, including capac-
itively coupled RF discharges and plasma immersion ion implantation materials processing;
therefore, a new method is desired.

Particle-in-Cell (PIC) methods weight particles to a spatial grid using a particle shape factor
to obtain charge and current densities on the grid [2]. For example, the code PDP1 uses the linear
weighting scheme shown in Figure 1. The field and circuit solution presented here is independent
of the weighting scheme used; we assume that the charge density is given on the spatial grid.

f Permanent address Institute for Space Research (INPE), P.O. Box 515, S. J. dos Campos, SP,
12201, Brazil; supported in part by CAPES, Ministry of Education, Brazil.
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Figure 1. PDP1 PIC with linear weighting to the

spatial grid. The subscript i s the particle index, j s
," ,, the grid index. For particles in a cell adjacent to an

electrode, the weighting must also account for the
0 ---- ---- half width of the cell.
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Figure 2. Particle weighting to a radial grid, using
area (cylindrical model) or volume (spherical model)
ratio.
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Particles of finite size, cylindrical shells in PDC1 and spherical shells in PDS1, are placed
in a gridded system, and weighted to the grid to obtain p(r) at the grid points. The particles are
assumed to have uniform density, so the area of rings or the volume of shells can be used to weight
the charges to the grid as shown in Figure 2. The particle of finite width Ar is centered at r. The
intersection between the finite particle and the grid cell determines the fraction of the particle
charge assigned to each grid node r. This is cloud-in-cell weighting, versus the particle-in-cell
weighting in [2, Figure 14-1 la]. The fractions of the charge assigned to the grids are

2 2
r) + 1 - ri -Si - ri V,2 - ri M

and r ,, 2 - r (2)

Si +,I - r+ 1/2 - + 1/2 (2)
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In the spherical model, the squared terms are replaced by cubic terms.

The charge density on the grid is used to solve the Poisson equation, V20 = -p/E, or the

equivalent flux conserving potential equation obtained from Gauss' Law. Once the potentials are
known, the electric field on the grid can be obtained from E = -Vt. The force on the particles is
obtained by interpolating E at each particle position using some weighting. The particle velocity
is updated using the Lorentz force equation,

dv, q,-v =q [E(xi) + vi x B) . (3)
dt m,

The particle positions are updated using

dxi (4)

-d i

In cylindrical coordinates, Eq. (4) is

dv, mvm-=F,+r,
d t ' r

d(rv9) =rF., and (5)

d 2
dv,

Here r, 0, and z are the cylindrical coordinates and v, = dr/dt and vg = rdOldt. For the cylindrical
model, B = Bi so F, = q(E, + vB,), F = -qvB,, and F, = 0. Equation (5) is finite differenced to
obtain the sequence

t + At/2 - Att2 . . )2F

, . + At (6 )
rt~ =rt +Atv+ ", and

r'v, qB,(r )v° r 1+A1 2mr'+ ( ')  r+a)

The latter guarantees conservation of angular momentum.
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In spherical coordinates, the equation of motion becomes

dv, m(v + v2)m-dv = Fr 4 r #
dt r

d(rv9) =rF.+mr2 s o d and (7)
md d

d(mr 2 sin Od)/dt)
= r sin OF,,dt

where r, 0, and 0 are the spherical coordinates and v, = r sin Odo/dt. For the spherical ,odel,

B = 0 so F = F, = 0 and Fr = qE,. If do/dt = 0 initially, then it remains zero. The motion is then
in a plane 4) =constant through the polar axis, in which r and 0 play the role of plane polar
coordinates. The angular momentum mrv is then constant, and Eq. (7) reduces to the cylindrical
case, Eq. (5).

II. POTENTIAL EQUATION
0 l

B

Figure 3. Configuration in planar coordinates with
I Plasma series RLC circuit and voltage/current source. In

these coordinates, the particles are charge sheets
with motion in the x-direction.-surface charge

V(t) or 1(t) L R C

The planar, cyclindrical, and spherical configurations for one-dimensional bounded plasma
systems are shown in Figures 3 and 4. The current in the external circuit interacts with the plasma
current via surface charge on the electrodes. Similarly, the potential within the plasma region is
affected by the distribution and motion of space charge, the electrode surface charge, and the
current in the external circuit. Thus, we seek a simultaneous solution for the potential and circuit
equations.
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"o i{Figure 4. Configuration in cylindrical and spherical
I I coordinates with series RLC circuit and volta-

ge/current source. Particles are infinite annuli with
motion in the radial direction in cylindrical
coordinates, and spherical shells with radial motion
in spherical coordinates.

surface charge

V(t) or I(t) L R C

The boundary conditions for the potential equation are obtained by applying Gauss' Law

to the system, AAY + A-(;-
E.dS= f2dV+ =0, (8)

S V

where the surface S encloses the plasma and electrodes. A, refers to the surface area of the
positively biased (left/inner) electrode, A. to the negatively biased (right/outer) electrode, and a
is the surface charge on the respective electrode. Note that p has units of charge/volume and a
has units of charge/area. Equation (8) is a statement of Gauss' Law; the first part reflects the
assumption of an ideal conductor connecting the electrodes to the external circuit elements, the
second part expresses conservation of charge in the system.

Applying Gauss' Law about each node of the gridded system, and using the definition of
potential, we obtain

planar 'Dill201 2 +(,j - p

r Ar2  (9)
cylindrical r. +rOj +- 2rjOj + r, 1aDj - I pj ,and

2 2 2 ___/2 _-_r'

spherical r,+ .- (r.a + r_ -)4j+ r]_ 12(j ( - )r
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In the cylindrical and spherical forms, r, , , = r, ± A.r2. For all Eq. (9), j= 1, 2, ..., nc- 1, where nc

is the number of cells in the gridded space. These results are equivalent to the flux-conserving
method of Birdsall and Langdon [2]. The planar and cylindrical result of Eq. (9) can also be
obtained by applying a central difference to the Poisson equation; the finite difference result is
different in spherical coordinates.

For a one dimensional system, the boundary conditions can be written

(DA= 0 and (10)

(5+ (11)
E0 -

E

Equation (10) fixes a reference potential for the system without implying a grounded electrode.
For the cylindrical and spherical models the inner electrode is driven; the outer electrode serves
as the reference potential for the system even when the inner electrode is not present. Equation
(11) can be written at one half grid cell from the boundary in conjunction with a central difference
applied to the definition of potential to obtain

(DO - 0 1 (AX'planar E2-IG ++p - - ,

(D o-01 1( ro+POr  ro0] (12)
cylindrical EV2= Et+r +_ 112_)) ,and

Ar - , 1(Y r2+ 2 ( r or1/

spherical E ( - 2D 0 +p O
V2 Ar Cr 2 3 1 2 r)2

Equation (9) and its boundary conditions for the gridded system are written in a general
matrix form,

(b0  cO  0 c( DO do
aI bi c, 0 01 d,

0 a2 b2 c2 0 02 I
=f •(13)

a.- 2 b, 2 ce -2  c- dc -2

a 6.-, b - - i (dnc-iJ



The superscript indicates the quantity is evaluated at time t. The matrix elements in planar
coordinates are

aj~l, j=l,2....,nc-1;
b=-2, j =1,2...,nc- ;

cj=l 0j=O, 1,...,nc-2;

o Po (14)do = + -, dj = pj , j = 1,2, ... nc -1

and 
f =AX2

E

The matrx elements in cylindrical coordinates are

a, = r_ -, j=1,2,...,nc -1;

bo = -r=2 b= -2r, j = ,2, ... , nc -1;

c r=r+1/2 , j=O, 1,...,nc-2;r _ .Po ( 5) 2
o= o+ o _( - ro) dj rp. j=1,2,..,nc-l

Ar2

and 
f =-r

E

The matrix elements in spherical coordinates are

j =j=21,2 ... ,nc- 1;1/=-2 r, -r V2 + r+ a-), ,,..n

cjj =, 1,....c-2 : (16)
d o = 3 o+ro  + p (r ' - r 3) , d , =( . 2 r _ r) ) 3 3 , . ., c

and f = -3-

When the center conductor is not present in the curvilinear models, the boundary conditions
must be modified. From Gauss' Law, the electric field at the origin must be zero. Integrating
Gauss' Law from the origin to r = rl2, we obtain the modified form of Eq. (12) for the hollow
cylindrical system [2, Section 14-10],



E2 (Do - et 2 rD (17)
12'Ar e2

The coefficients are still given by Eq. (15), with the modification that

P0 2do r(18)
2Ar1/

The modification of Eq. (16) for removal of the center electrode in the spherical system is similarly

do= p~r' .(19)

CIRCUIT

The external circuit is coupled to Eqs. (13)-(16) through conservation of charge at each wall,

AAu = Qo,, + AQ , (20)

where Q,,. is the charge deposited by the convection (particle) current and AQ is the charge
deposited by the external circuit current, both over some interval in time. Equation (20) is applied
at the positively biased electrode as shown in Figures 3 and 4, guaranteeing conservation of charge
at all times. The same logic can also be applied to the other electrode; however, the surface charge
on the second electrode is determined readily from Eq. (8) when the first surface charge is known.
The charge conservation equation becomes

+ ' (21)

where Q is the charge on one plate of the cxternal circuit capacitor. An alternate method of
coupling the circuit to the potential matrix is applying continuity of current (Kirchhoff's Current
Law) at the boundary [2, Section 16-9],

1o / (22)

where Jco" is the plasma convection current at the electrode. The methods are equivalent when

a first-order backward difference is used for aa/at and I = aQiat. Since Qc,,, is in general a noisy
quantity in a particle simulation, any other quantity in Eqs. (20) and (22) will contain similar noise.
Thus Eq. (20) causes the wall charge a to be noisy as might be expecsted, because the capacitor
charge reacts to the particle convection current only through the wall charge; i.e., particles absorbed
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by th: wall contribute immediately to y, but the charge drains slowly to the capacitor through
currents. It can be shown that Eq. (22) results in the convection current being absorbed gradually
into a, so the noise is induced in the capacitor charge Q (and consequently in the external current
[) to satisfy conservation of charge. Therefore we use the conservation of charge method of Eq.
(20).

III. GENERAL SERIES RLC CIRCUIT
Four cases cover the full range of external circuit parameters. For the general voltage-driven

series RLC circuit, the capacitor charge Q is advanced using Kirchhoff's Voltage Law,

L d z--- Q  R dQ- + Q V(t) + (D,,, - (Do (23)dt2  d C

The polarity of the source and resultant positive current are shown in Figures 3 and 4. The
general circuit equation is finite differenced using the second-order backward Euler representation
of the first derivative,

(dQ t'= 3Q1-4Q1-A' + Qt - A  (24)

dr) 2At

arid the second derivative,

Sd2Q l'=3(dQ/dt)'- 4(dQ/dt)'-A + (dQ/dt) ' - 2a

dt' ) 2At (25)

9Q' - 24Q'- ' + 22Q'-A' - 8Q'-3 '+ ±Q,-"'
4At 2

The latter is obtained by a second application of the first derivative to Q. An alternate 4 point
difference for the second derivative is given by:

(d2Q' 2Q- 5Q'- + 4Q''-Q

dt (26)

The charge on the capacitor is not known at t. Combining Eqs. (23)-(25), we obtain

V (t) + (DO' o - K'
Q= (27)



where

K' = a lQ' -A
2+Q'- + OQ'- + a4QQ'-4,

9 L 3R

= 4At 2At C,
L R

A t (28)
1lL IR

o-2 At'+2 t '

L
=-2- ,and

At 2

I I
c-4at2.

Combining the potential equation results, Eqs. (13)-(16), with the circuit equation results,
Eqs. (27) and (28), using the boundary condition, Eq. (21), we obtain the self consistent field
solution matrix for the voltage-driven series RLC circuit case. The matrix can still be represented
by Eq. (13), replacing elements of Eqs. (14)-(16) as follows. In the planar model,

Ax
bo = -1 - A and

(29)
_p; (y- 1( Q,At V(At)-K)

do =-f+---+ - Qo". +•
Ax A Ax4ov ( p

In the cylindrical model,

b = -r,( 2 -__Ar and

(30)
r_2-r_ r I , V(t)-K

Ido- =1/r 2 -0r PO + o0 &+ -- acosy-Q(A + • X
d=2Ar Ar 2nh+

In the spherical model,

bo = -r2- Ar and

(31)

= ( -ro)p+3ro At +3 , -t-At+ V(t)-K
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Here, A is area of the planar electrodes and h is axial length of the cylindrical system. The solution
is then self-consistent and second-order accurate for the general circuit case. The matrix can be
solved using any algorithm optimized for tridiagonal matrices [3].

IV. OPEN CIRCUIT (FLOATING OUTER ELECTRODE)
When C -- 0, the impedance of the external circuit approaches infinity, becoming an open

circuit. The potentials on the boundaries are floating; no circuit solution is required since there
is no external current. The surface charges on the electrodes influence the potential as always,
but the electrodes cannot exchange charge via external current. In this case, the field solution is
given by Eqs. (13)-(16), with

(32)

V. SHORT-CIRCUIT
When R=L=O and C -- 00, the external circuit is a short, with

(DO - 0' = V(t) . (33)

The short-circuit case is applied in practice when

planar /- > 10 1'

C > l01 (34)
cylindrical 2nteh/ ln(r,./r0 )

C
spherical 4 CrrrW(r, - ro)> 10,

where I is the length of the planar plasma region.

The field solution is still given by Eqs. (13)-(16), with

a, =b =c =d =0, (35)

and

11



=P Iv(t)
planar di = -f

cylindrical d, = rp, - r,/2(t) and (36)
f

Equatior (35) eliminates the first row of Eq. (13). In Eq. (36),f depends on the model as
given in Eqs. (,i4)-(l6). Note that the wall charge is no longer required to solve the potential
equation. Wall charge is found using Eq. (12) once the potentials have been determined, and the
current is found by finite differencing Eq. (22),

= t-U/r=A- (37)P

Determining the current in this way produces a noisy result as discussed above; however, with a
short between electrodes, we expect large currents with rapid changes since potential differences
cannot exist along an ideal conductor. Note that here I is only a diagnostic quantity, so the
time-centering is not a problem.

VI. CURRENT-DRIVEN CIRCUIT
The final case is the current-driven external circuit. An ideal current source is assumed

which can drive the specified time-varying current I(t). The external circuit elements R, L, and
C are ignored since an ideal current source is an open circuit. Then Eqs. (13)-(16) are applied
with the wall charge found by finite differencing Eq. (22) for diagnostic purposes.

VII. INITIAL CONDITIONS
The multi-point finite difference methods require initial values for the Q', where n < 0.

Physically, these values are used to obtain the desired initial conditions for the circuit equation,
Eq. (23). For example, the initial charge on the capacitor, Q0, and the initial current in the external
circuit, f0, form a complete set of initial conditions for the differential equation. However, the
finite difference requires five initial values for Q (four for the 4-point method). There are several
ways the conditions can be obtained.

The traditional method for starting a multi-point scheme (second or higher order accurate)
is to use a 2-point method (first order accurate) to obtain the required initial values. A smaller
timestep is used with the 2-point method to maintain the same accuracy. This presents a problem
for a PIC code; the time-centered mover is initialized such that positions are known at integral

12



timesteps, while velocities are known at half timesteps [2]. Thus, it is difficult to switch to a new
At and maintain the time centering. Also, switching schemes is inefficient from a coding stand-
point. In addition, the stability of the starter method must be considered in relation to the circuit
parameters R, L, and C.

Another method of initializing the solver is to solve the circuit equations analytically. To
do this, we must replace the plasma by a known impedance. Using the vacuum capacitance of
the plasma region is the obvious choice; physically, this means there is no plasma until t--O+. If
plasma is then introduced, the impedance changes abruptly and the circuit has been conditioned
for a different system. This problem is less severe when the plasma is generated at a slow rate
since the impedance change is gradual.

If the method turns out to be stable, the initial conditions will be damped regardless of the
value (this includes desired initial conditions as well as error in the initial conditions). If the
method is unstable, any error in the initial conditions grows exponentially. If the method is
marginally stable, any error in the initial conditions remains in the solution, neither growing nor
damping.

VIII. STABILITY
We now explore stability of the circuit equation, Eq. (27). As is customary for stability

analysis [4], we neglect the driving terms and study the homogeneous circuit equation

d2Q dQ+Q
L - +R!- +=O0. (38)

dt2  dt C

We study the stability of the 5-point circuit difference, Eqs. (24)-(25), as well as the 4-point
difference, Eq. (24) and (26).

In the limit of no inductance, L -+ 0, both methods produce

Q( 2A 4(39)
SRC)

Letting Q' = Q'e*O and = e we obtain

Q = wa-t = 2Qt-'2, (40)

where 1 15 1 is required for stability. Here, y and 4 are arbitrary complex variables. Then the

characteristic stability equation for Eq. (39) is

4
2(3 + 2At/R C) -44 + 1 = 0. (41)
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The roots are

2 ± {l - 2At/RC (42)
3 + 2At/RC

1.2

UNSTABLE
.... L......................................................

0.8

0.6 Figure 5. Stability roots in the limit L -- 0. Since
I Ij I 1- - everywhere, the method is stable. The

0.4 scheme can only follow the RC time when At 5 RC/2.

0.2

0
0.001 0.01 0.1 1 10 10 1,000

RC

As shown in Figure 5, both methods are stable in the limit L -- 0 for all positive, real Au/RC.

Now we attack the more difficult general case. The general characteristic stability equations
for the four and five point schemes are respectively

3 (2+ 3T 2)_425+2;+( +t I 1=0 and (43)

4(9 + 6, + 4x2) - 4'(24 + 8;,) + 2(22 + 2t,) - 84 + 1 = 0, (44)

where the normalized times are -T = R AtIL and t2 = AtI'1i-C. We obtain the roots of Eq. 31 using

the Lin-Bairstow method [5], which gives the complex roots of polynomials. Figures 6 and 7
show the stability of the four and five point methods, respectively, for a wide range of t, and 't 2.

14
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(a) (b)

Figure 6. Magnitude of the three roots of the four
A10- point method, whose characteristic equation is Eq.

(43). Since for all three roots, 14,1,2,3 j < 1, thefourpoirit
difference method is stable over the range shown.

110 1O'
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10 1 10, 1010I

(a) (b)
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0-10 1

0 7 0 100'

100 1 10 10 1 10

(c) (d)

Figure 7. Magnitude of the four stability roots of the five point method, whose characteristic
equation is Eq. (44). Since all four roots, I 1, the five point difference scheme is stable
over the range shown.

IX. SIMULATION ACCURACY
As discussed above, the circuit and field solution is second-order accurate. We now dem-

onstrate the accuracy of the five point circuit as implemented in the code, PDP1. To compare the
simulation results with analytic circuit theory, the permittivity of the plasma region is taken as
1020 and no plasma is used. Then we have a passive voltage-driven series RLC circuit. The current
for a sinusoidal driving voltage V = sin(o)t + 0) can be predicted using

a2V/((OZ) cos(0 - 8) + V/Z sin(0 - 8)
1 = aa-1exp(a 1t)a2/aj- 1

(45)
aV/(oZ) cos(0 -8) + VIZ sin(0 - 8) exp(v2t) + Z sin(ot + 0 - 8)

" a1 /a2 - 1 p

where co is the angular frequency of the voltage, 0 is the initial phase of the voltage, and

8=asin(OL -I(COC)J

R R2  1 (46)R --- ,and
a 2L- 4L 2 LC'
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-R ._I R2  1
a2 2L 4L2 LC.

IEO

peak at f-1/2 7MHz

10E-

0 f(df=7.96E+004) 1.01 063E+007

Figure 8. The frequency spectrum of the steady-state current obtained from PDP1.

We choose R = 1, C = 5 x 10-6, L = 10-6, and w = 106, and initial conditions Q(0)=0 and I(0)=O.

The code PDP1, using the same parameters and timestep At0 = 2/128w, gives the results shown
in Figures 8 and 9. Here, tr = 0.049 and T. = 0.022 for the baseline case. Note that the r scale
with At/At0.

From the frequency spectrum of the current shown in Figure 8, we see the driv-n frequency
peak is six orders of magnitude larger than the magnitude at other frequencies, indicating nearly
a pure sinusoid. Since PDP I stores results in single precision (32 bits), we expect roundoff error
in the sixth or seventh significant digit, so the powers less than 10.7 are neglible. Comparing the
phases I(0, we see the the PDP1 results follow Eq. (45) closely, with increasing phase error as A
increases. From the history of the current, we see the initial transient due to the charging of the
capacitor from Q(O)=O.

17



0t

o/

Exact
........... A t/At o =2

At/ Ato =4

0 1.25664E-005

Figure 9. PDP1 output for voltage-driven series RLC circuit. The exact current predicted by
Eq. (45) compared to the results of the PDP1 circuit solver at various ratios of At/Aot where

Ato 2ir(128(o). Note the transient charging of the external capacitor.

0.04

0.03

o~0.02

0.01

0
0 1 2 3 4 5 6

A'lAt 0

Figure 10. The relative error, I (I.., - Ipel,)/Ia I, versus At/At o compared with a power fit. The

exponent of the best power fit is 1.94.
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The relative error, plotted in Figure 10, follows the curve 0.00158(At)"' closely. An ideal

second order accurate scheme would result in a power fit exponent of 2. This demonstrates second
order accuracy, with errors resulting from truncation of the finite difference at At2 terms.

X. CONCLUSION
A method for the simultaneous solution of the coupled potential and external circuit

equations for one-dimensional electrostatic plasma particle simulations is presented. The method
is stable over many orders of magnitude for the values of the RLC circuit elements, and can in
principle be extended to arbitrary external circuits.

The method is implemented in the codes PDPl (Plasma Device Planar I Dimension), PDCI
(Cylindrical), and PDS 1 (Spherical)t . These codes have been used to simulate many complete
bounded plasma devices [6-11], including voltage-driven RF discharges, plasma immersion ion
implantation devices, and Q-machines. The codes have performed reliably, generating many
interesting discussions and discoveries.
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